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Kinematics of Dirac’s spinor field 

M Mattes and M Sorg 
lnstitut mr theoretische Physik der UniversitZt SNttgan F’faffenwaldring 57, 
D 7000 Stuttgart 80, Federal Republic of Germany 

Received 5 February 1993 

Abstract. A kinematicd separation of the slowly varying pam f“ the violently oscillating 
constituents of Dirac’s spinor field is achieved, which also d e s  over to the physical densities, 
e.g. to the current and the polarization. Various applications of this separation are discussed 
such as the Gordon decomposition and the exclusion of a closed universe by the coupled Dim- 
Einstein equations. . 

1. Introduction 

Retrospectively, the historical brekthrough of quantum mechanics was already achieved 
by the twenties of our century, when the pioneers [ I ]  of the new quantum paradigm 
became able to explain the spectral lines of atoms and molecules. In particular the Bohr- 
Heisenbergdchrodinger debate about the correct explanation of the spectral frequencies 
brought out clearly the strange and even paradoxical features of the quantum approach 
it is not the orbital period of the electron in an hydrogen atom which determines the 
frequency of the emitted light (as Schriidinger originally believed), but it is the energy 
difference AE = En - E1 of the two stationary states involved, divided by Planck’s 
constant h, which leads to the correct relationship 

A E  
fi 

U = -  

nowadays known as ‘Bohr’s frequency condition’. 
As mysterious this result may appear from the classical point of view, it is 

correspondingly evident through a quantum-mechanical (or better, semi-classical) argument 
when the electron is in the upper eigenstate I @ I I )  of the Hamiltonian 

kl@d = Errl@~r). (1.2) 
. .  

its time evolution is found from Schriidinger’s equation 

as 

0305470/93/123013+15$07.50 @ 1993 IOP Publishing Ltd 

(1.4) 
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and a similar result holds for the lower state I+I). Therefore, if the electron undergoes some 
transition from the upper to the loyer level, its intermediate quantum state should be some 
linear combination of the kind 
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IW)) = Cl(t)l+I(t)) + Cll(t)l@lI(~)) 

I+I) + C d E U ”  WE) (1.5) c -1Etrlh = le 

so that the density p ( z ,  I )  = 4 . +(z, t )  acquires an oscillating interference part pa. i.e. 

(1 .6~)  

(1.6b) 

p o s ( z ,  I )  = &~e- i~~$ l (z )  +n(z) + c.c.. ( 1 . 6 ~ )  

In view of this result, it now appears as a matter of course that the oscillatory part pm will 
act as a source for radiation with just the frequency o given by Bohr’s formula (1.1). 

This paper is concerned with the relativistic generalization of the splitting (1.6). i.e. the 
separation of the wavefunction + into a rapidly varying part, responsible for radiation, and 
into a slowly varying part which describes the average (i.e. smoothed) motion of the radiating 
particle in the relativistic domnin. Here we expect a much higher frequency U,  because a 
particle is in general mixed up with its anti-particle and the characteristic frequency for 
particle annihilation is in the order of magnitude o m 2Mcz/ f i  (where M is the physical 
mass of the particle). In order to make our intention more concrete, we give a short 
demonstration of this effect by considering a Dirac spinor field +(x) over Minkowski space- 
time. We require it to satisfy the relativistic generalization of Schrijdinger’s equation (1.3) 

ifid,+ = 31,+ ( 1.7) 

. 

which has recently been shown [2] to be equivalent to Dim’s equation 

i w a , $  = MC+ (1.8) 

yp‘Hw = M c 2 .  (1.9) 

if one imposes the following condition (among others) upon the Hamiltonian 1-form ‘H, 

In short, the Dirac wave equation + ( x )  (more properly: I + (x ) ) )  is considered here as 
the section of a four-dimensionnl vector bundle with typical fibre C4 over space-time as 
the corresponding base manifold; quite similarly as I+@)) in Schmdinger’s non-relativistic 
theory (1.3) may be considered as some section of an infinite-dimensionnl vector bundle 
with the Newtonian time axis R’ as the corresponding base space. Therefore, whereas the 
Schmdinger Hamiltonian 6 (1.3) is in general a (time-dependent) operator over an (in)finite- 
dimensional Hilbert space, our Hamiltonian ‘H’ (1.7) is a @(4, C)-valued I-form and is in 
general space-time dependent rather than time dependent. This formal transition from the 
non-relativistic Schrodinger theory to our present relativistic approach is best exemplified 
by a treatment of the free pnrticle. 

For a free particle with four-momentum p,. wave vector k, and four velocity b, (-. 
b’b, = I), i.e. 

p,  = fik, = Mcb, (1.10) 
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the relativistic Hamiltonian 7i, is readily found as 

‘Hp = Mc’ b,(bhy’) (1.11) 

and consequently the relativistic wavefunction @ reads in a certain analogy to the non- 
relativistic case (1.4) 

(1.12) 

Here, the initial value $(O) at the origin of Minkowskian space-time (without loss of 
generality) is an arbitrary element of the typical fibre C4. However, the difference is that 
the non-relativistic timeevolution operator 

(1.13) 

in Schrodinger’s theory has now been generalized into a relativistic space-time evolution 
operator 

(1.14) 

which propagates the initial value of the wavefunction $(O) from the origin of Minkowskian 
space-time into the whole 4-manifold. Observe, however, that the ‘unitarity’ @ E U-’) 
of the relativistic evolution operator U (1.14) is incidental here, because the relativistic 
Hamiltonian ‘Hfl will in general not be ‘Hermitian’ (‘#+@ # X p ) ,  in contrast to Schrodinger’s 
operator l? 3 A+. (As a demonstration, ‘see -the treatment of the relativistic hydrogen 
atom [2]). 

After this side-step to look at the formal analogies between the non-relativistic and the 
relativistic approaches, we return to our original problem of identifying slow and rapid 
variables in the relativistic domain. 

Looking at the current density j, = $ . yf i .  @ generated by the solution + ( x )  (1.12). 
we readily find [2] 

j, + CO)+ = $CO) . a ( x )  . y ’ ~  . ~ ( x )  $(o) 

= (bhj’(0))b’ + cos,y[j@(O) - (b,&O))b”] +4s inx  bn+(O). (1.15) 

Here, we have anticipated the polarization tensor S,, which is usually defined as 

s,, := $$. z,~. + kP” = ;rYw Y J )  (1.16) 

with its initial value S,,(O) being built up by the initial value $(O) of the~wavefunction in 
an obvious way. The interesting point here is the phase ,y emerging in the current (1.15) 

(1.17) 
x(x) = 2mb,xy 
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Obviously, the quantity is the relativistic generalization of the frequency o (1.6~) and is 
just in the expected order of magnitude (the Compton-frequency U, = 2Mc2/fi le' s-I). 
Thus, we see that-in the relativistic case-it is already thefree particle which in general 
develops rapid oscillations around its average translatory motion characterized by the 
constant four-velocity~b, (-+ first term in (1.15)). This result corresponds to what is known 
in the literature as Schrcidinger's Zitterbewegwzg [?-5]. Similarly to the non-relativistic 
case, this trembling motion is ahsent whenever the particle is in an eigen-state 1c.&) of the 
Hamiltonian, i.e. (cf (1.12)) 
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(1.18) 

In this case the current simply becomes 

'"& = (qP. = ppb, (1.19) 

as is normally expected for a particle in uniform motion. 
After these preparations, we are now able to define more precisely the problem to be dealt 

with subsequently: also expecting that the other physical densities of Dirac's spinor field 
(such as pseudo density 6, axial current pp and polarization Swv) will split up into violently 
oscillating and slowly varying parts, we want to identify these kinematically different parts 
and discuss their properties. Here we want to abandon the restrictions to a free particle and 
consider the quite general case. Especially, one wants to know whether the well known 
Gordon decomposition [5,6] really succeeds in separating the slow and rapid parts of the 
physical densities (-+ it does not, see below). Such an undertaking would be facilitated 
greatly if one could identify the slow and rapid variables already within the wavefunction @ 
itself, which we are now looking for. 

2. Spinor kinematics 

We consider the wavefunction W ( x )  as some (local or global) section of a four-dimensional, 
complex vector bundle W4. Thus, Y(x)  mediates a (local) map from any point x of our 
pseudo-Riemannian space time V4 as base space (with metric Gwv) into the typical fibre C4 
of the bundle W4, i.e. 

W :  x - + q ( x ) E C 4  X E V 4 .  

If the physical situation admits only local sections Y(x), we have to cover our space- 
time V4 with several patches and apply a gauge transformation on the wavefunction Y in 
the intersections 

W' = s-' . W. (2.1) 

Here, the group element S is a member of the stmcture group S p i n ( l , 3 )  for the vector 
bundle Y4 [71. Any such section W ( x )  is referred to as an associated section B(x) 
of the principal bundle B4 of orthonormal pseudo-frames over the same base space V,. 
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This implies that any gauge transformation (2.1) of the spinor Y is accompanied by a 
homomorphic transformation of the tetrad constituents B,,(x) of B(x)  

where A is an element of the h r e n t z  group SO(1,3), the invariance group for the 
Minkowskian metric g.p. The homomorphic relationship of both gauge elements S and A 
is frequently expressed through 

S - I  .?a .S AmB P B  (2.3) 

where 7' are the ordinary Dirac matrices acting as operators on the typical fibre C4 of W4. 
As a consequence, the physical densities carried by the D i m  spinor field are left gauge 
invariant 

p'(x) = p ( x )  (:= rt . Y(x)) 

P'(x) = B ( x )  ( := -JI . E  . q x ) )  

( 2 4  

(24b) 

(2 .4~)  

j h ( x )  = j , ( x )  ( := Bap*. 9". rt . y,, . Y) (2.44 

j' ( x )  = y , ( x )  ( := iG . sy, . w = irt . F,, . ") . (2.4e) + 
(Clearly, one is willing to consider only gauge invariant objects as physical densities!) 

Up to  now^ we have done nothing else than collecting the stand@ knowledge about a 
spinor field Y, but now we use a new argument in order to reparametrize Y in physical 
terms. We start from the observation [8,9] .that the principal SO(1.3) bundle B4 admits 
an SO(3) reduced subbundle g4, which is equivalent to the existence of a global unit 
section b,(x) (h,b" = + I )  of the tangent bundle Ta of space-time V,. Now we idenfifr 
this distinguished vector 6 ,  with the average four-velocity field of the D i m  particle (cf the 
heuristic arguments for the free particle). Once the full gauge symmetry (2.1). (2.2) has been 
broken down in this way to the ordinary rotation group SO(3) c SO(l,3) (respectively 
SU(2) c Spin(1, 3)). we further identify the time-like tetrad vector BO, with that particle 
velocity field b,, i.e. 6, = Bow Next, we try the following general ansatz for the spinor Y 
relative to that distinguished tetrad B,, = [b,, Bj,: (j = 1,2,3)] 

Y = &[ coshrc(ap+ +a+) +eix sinhrc(b4u- +btu+)]. (2.5) 

In what follows, we will readily explain and discuss this ansatz in detail. 

orthonormal spinor basis (U*, uT] for the typical fibre C4, i.e. 
The expression (2.5) shows the (local) decomposition of W with respect to some 

- - - - 
U+. U+ = U - .  U- = - U- f U- = -211.. U+ = +I 

E+. U- = E+. U- = " f  = 0. 

( 2 . 6 ~ )  

(2.66) 
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Its coefficients [a,, a,] and [ b J ,  b t ]  form two 2-spinors a, p 
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which transform according to the fundamental representation (OS) of the remaining gauge 
degree of freedom SU(2), i.e. 

a' = ((*IS)-' .a @.Sa) 

p' = pS)-' . B 

(OS E S U ( ~ )  c Spin(l ,  3)). 

(2.86) 

Both 2-spinors a, B are required to be normalized to unity, i.e. 

and consequently they represent together 2. (4- 1) - 1 = 5 field degrees of freedom because 
we have equipped their overall relative phase x with an extra degree of freedom. Clearly, 
this angular variable x will be regarded as the relativistic analogue of the non-relativistic 
phase difference of the two stationary states (cf (1.5). (1.6)) and therefore will be regarded 
as a 'rapid' variable, in contrast to the 'slow' spinors a, f l .  The remaining two variables 
for our re-parametrization of the 8-parametric wave function W are the 'intrinsic velocity' K 
and the density p(= $. W); the latter is assumed to be positive everywhere (otherwise one 
interchanges the hyperbolic functions). Both variables K and p are considered as slow so 
that the phase x is left as the only rapid variable. This means that the intrinsic velocity K ,  

measuring the relative independence of the actual current j,, from the average velocity b, 
(see below), is changing only slowly and consequently the trembling effect due to the 
Schrhriidinger Zitterbewegung is expected to arise from rapid changes of the'spatial direction 
of the current jF.  Clearly this process must be governed by the rapid phase x. 

For the verification of a such a concrete picture, one has to explicitly compute the 
physical densities (2.4) by means of the wave function Y (2.5). This will be done 
in two steps, namely by first computing these densities in the distinguished reference 
frame (Be,, + [b$, BjJ) and then~pulling the results back to a coordinate basis, as indicated 
in equation (2.4d). 

2.1. Calculation in the distinguished reference frame 
During the first step, there emerge some SO(3) invariants, such as 

z+ = ;(a+. p + p+ .a) 

z- = I 2 (  a+. B-B+.a)  

m * k  = 1(a+ 2 .uk . p  + p + .  u k  .a) 

(2.10a) 

(2.106) 

as well as some SO(3) vectors involving the Pauli spin matrices uk (k = 1,2, 3) 

(2.lla) 

(2.1 l b )  n -k = &(a+ .& .  B - B +  .& 

$ = ;(a+. & .  + p+ . gk. p )  (2.114 

17 =~L(a+. 2 ,,k. a - p+ . ,+'. (2.11d) 
- 
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One is easily convinced by means of the two-dimensional analogue of the relationship (2.3) 

'2)s. ,,k . 0 ( 2 ) s - l  = (S-')k.,,i J (2)s E su(2) s (3) (2.12) 

that these SO(3) vectors correctly transform under a~gauge rotation of the reference hiad 

Bjs &,skj (2.13) 

i.e. 

hk' = hj etc. (2.14) 

Moreover, their products are determined by the scalars (2.10) in,the following way 

(2.15a) 

(2.15b) 

(2.1%) 

(2.154 

(2.15e) 

(2.158 

(2.i5g) 

(2.1%) 

Here, the last relation (2.1%) shows that L-- three vectors ik, hk, $k are orthogonal to 

the fourth vector fk;, therefore we can try to write tk as a combination of the first two 
vectors fik , hk and find 

$k  = z+hk + z i i k .  (2.16) 

Similarly the fourth vector ik reads in terms of f i x ,  6ik 

(2.17) 

Further, since hk and f i k  are not orthogonal (cf (2.15c)), it may be convenient to choose 
an orthogonal basis'in their two-plane by looking for the orthogonal complement ik of the 
vector $ k  (2.16). i.e. we put 

, .  - .  
1' = Ejk,,&l. 

;ik = - z+n -k (2.18a) 

such that 

r ' ; k i k  = 0 (2.186) 
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and the length of the new vector 2 is then found as 
2 (2.19) P Pk - (2- + z+)(-1 + 2- + 2:).  

^ ^  
- k -  - 2 2 

Comparing the last equation to (2.15d), it seems sensible to renormalize both vectors 6k 
and j k  as 

with 

z := &F 
so that ik becomes a unit vector 

(2.2Oa) 

(2.20b) 

(2.21) 

(2.22) 

and 3 acquires the same length as fk (2.15e) 
- - ^ ^  

fkfk = ikik = -1 + zz .  (2.23) 

Consequently, equation (2.17) for the reconstruction of ik from the new orthogonal basis 
reads now 

" 

' k  1 - - E j l f  k ,  =j'f 8 .  (2.24) 

We have now collected all relevant SO(3) gauge objects, which we need for the 
construction of the SO(1,3) invariant physical densities (2.4) and can now proceed to 
the second step. 

2.2. Transfer to a coordinate basis 
These densities can readily be written down after referring the SO(3) objects back to some 
coordinate basis, e.g. 

^k 2, = 

or (cf (2.24)) 

i, = b'E,,h,fAgu etc. 

We thus find for the desired densities 

6 = p z  . sinh 2 ~ .  sin()( + r )  

(2.25) 

(2.26) 

(2.27a) 

(2.274 
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Here, we have introduced the phase shift < as a slow variable, in contrast to the rapid 
phase x. because < is constructed by means of the slow two-spinors a, p through (cf (2.10)) 

z- 
z z 

cos< = - ’+ sin< =-. -~ (2.28) 

Our result (2.27) is now considered as the desired relativistic generalization of our 
There is a nice consistency check for this result, because the starting point (1.6). 

densities p ,  b, j,~, yII, S,,, must obey the recently discovered identities [IO] 

(2.29a) 

(2.296) 

(2.29c) 

(2.296) 

(2.296) 

These identities are easily verified by means of the scalar products (2.15). which read in a 
coordinate basis (cf e.g. (2.23)) 

. .  

(Observe that the 4 vectors {b,, i,, i,, f,~ form an orthogonal tetrad.) 

3. Applications 

After the physical densities of Dirac’s spinor field have been kinematically split up into 
their rapidly and slowly varying parts, one wants to know what the consequences of this 
splitting are for various physical effects. In this paper, we restrict ourselves to three items, 
namely the questions: 

(i) .Whether that kinematical splitting is identical to the well-known Gordon decomposition 

(ii) Whether both the magnetic and electric dipole densities are affected by these rapid 

(iii)Why a closed FRW universe is forbidden by the DiraoEinstein equations. 

of the current-j,. 

oscillations in a similar way. . .  

However before going into the details let us confirm that the split& achieved agrees 
with the previous free-particle results (1.15)-(1.17), which have been obtained by solving 
Dirac’s equation directly. 
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3 . I .  Free particle in flat space-time 

For this special situation, the principal bundle B, admits a global section B(x) and the 
corresponding solution Y(x) (1.12) leads to the current j ,  (1.15). It is only in this special 
case that, by virtue of the global teleparallelism, the initial values j P ( 0 )  and SF”(0) at the 
origin could be propagated into the whole Minkowski space. On the other hand, the general 
shape of  j ,  and S,, is exhibited in equations (2.27) and consequently both results must fit 
together. Indeed, taking, the general form of the initial values jJ’(0) and S’”(0) from (2.27) 

hij’(0) = p(O)COSh2K(O) 

M Mattes and M Sorg 

(3.11 
h;.+(O) = - i p ( o )  sinhk(0)  . (2’(0) sin[x(o) + <(o)J - P(o) COS[X(O) -I- <(o)I) 

and substituting this into (1.15) just reproduces that free particle result (1.15) (respectively 
(2.276)), namely 

j ” ( x )  = p(O)[cosh2~(O)b~+sinhZ~(0)~  ( jp(0)  .cosx(x) + fp(0)s in~(x))]  

but with the obvious replacement 

(3.2) 

x(0) + <(O) * x(4 = x(0) + <@I + 2 m b d .  (3.3) 

Thus we see that the (free-particle) Hamiltonian ‘H, (1.11) does nothing else other than drive 
the rapid phase x according to (3.3), leaving constant the slow variables p ,  K ,  <, iF, f,. Of 
course the latter variables are expected to vary too, when the free particle enters some 
force field, but not so rapidly as does the phase i. Tacitly it is assumed here that a clear 
distinction can always be made between ‘slow’ and ‘rapid‘ variations of Y, at least when 
the extemal forces are weak and slow enough! 

3.2. Cordon decomposition 

The free-particle result (3.2) is also a neat demonstration of the trembling effect: the 
current j ,  consists of an average translational motion along the b, duection and of 
a rapid trembling in the orthogonal 2-plane (bHf,  = b g j ,  = 0) with the Compton 
frequency CO, = x (1.17). On the other hand, the well-known Gordon decompositon of 
the current j ,  

(3.4) 

is intended to split up the current into a ‘convection’ part (c) and a ‘polarization’ part (p), 
so that one is tempted to identify this convection part with that average component of 
the motion (- h,) and similarly the polarization part may be intuitively associated with 
the remaining trembling component Indeed, at first glance this identification is perfectly 
supported by the free particle case: splitting up the velocity operator [2] y, = p, +z, into 
its convective part @, 

j ,  = ( C )  j ,  + (P) j, 

and its polarization part z, 

(3.6) 
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we readily find by means of the free-particle Hamiltonian X, (1.1 1) 

(”j, = . &, . = p(0) cosh 2K(O) . bw (3.7~) 

‘P’j” = G . z J ” ~  = p ( 0 ) s i n h 2 ~ ( 0 ) ( ~ ~ ( 0 ) c o s ~ ( x )  +f&(O)sinx@)). (3.7b) 

Thus, this free-particle result appears to meet very well with ‘the intuitive expectation 
mentioned above. 

However, this quick success does not withstand a second scrutiny. The reason is that 
the free-particle case is too specific. Therefore let Us consider a more complicated situation 
by putting the Dirac particle into a mw universe [IO]. Here, we have to use the cosmic form 
for the Hamiltonian ‘X,, which additionally depends upon the radius R of the universe, the 
Hubble expansion rate H (= k/R) and upon the foliation index a (= 0, f l ) .  For this 
situation the splitting analogous to (3.7) for the current looks as follows 

(3.8) 
H 
2m 

and similarly for the polarization current 

+ --p s inh2~(&.  sin()( + <) - f, cos(x + 0) 

3a 
2mR 

‘P) J!‘ ’ = ---pcosh2K ~ C O s ~ b ~ + + s i n h 2 K ( ~ ~ C O S ( ~ + ~ )  +f,Sin(Xf<)) 

U + --p sinh k(& cos< + f, sin 5 )  
2mR 

(3.9) 
‘ H  . 
2m, 

- --p sinh2K(&Sink + <) - J,cos(x + 0) . 
Thus we see that the naive supposition is correct only for a$at space-time, i.e. for a flat 
universe (a = 0) with vanishing Hubble expansion rate H 0 (U constant ‘radius’ R of 
the universe). In a closed (a = - 1) or open (0 = +1) universe, the result (3.8) says that the 
‘smooth’ component (- b,) of (‘)j, acquires a rapidly oscillating correction term (- cos x) 
and a slow transverse component (being free of the rapid angle x). But evidently these two 
terms become relevant only in a small universe ( m a  McR/h - 1). i.e. when the size of 
the universe is in the order of magnitude of the Compton wave length (m-’) of the Dirac 
particle! If the universe is large enough (mR > 1). these two terms become negligible q d  
the convection current ‘”j, (3.8) really approaches its flat space-time counterpart (3.7a), 
provided the expansion rate H k / R  is small enough compared to theinverse Compton 
wavelength m ( H  << m). Similar arguments hold for the comparison of the polarization 
current ‘ p ’ j w  (3.9) in curved~space-time, to its flat space-time analogue (3.7b). 

Thus the general conclusion from these results is that the Gordon decomposition 
separates the slow and rapid motions only when the external forces are small enough 
to consider the particle as travelling freely in an approximately~flat spacetime! More 
precisely: as soon as the extemal forces or the background geometry produce essential 
changes of motion to the Compton length and time scale, the Gordon decomposition becomes 
kinematically meaningless. (Of course, these are also the limitations for any single-particle 
theory.) 
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3.3. Dipole densities 

The kinematic splitting of the physical densities is also relevant for the polarization 
tensor S,,,. As is well known, this tensor accounts for the magnetic i n d  elechic dipole 
properties of a Dirac particle; however it depends strongly upon the observer as to what he 
sees as magnetic and as electric. Thus, in the present context, we may ask whether there is 
some ObServer who sees one of the two dipole densities being completely free of the rapid 
variations inherent in the wave function V. 

Let the four-velocity of the observer be V, (VFV, = + I ) ,  then the physical 
polarization M,, is split up into its magnetic and electric parts through 

M Mattes and M Sorg 

(3.10) 

where ‘.’M, denotes the electric (el) and magnetic (m) dipole densities, respectively. As a 
matter of principle, there are two manifest choices for the observer in question: 

(i) The first observer is co-moving with the current j , ,  i.e. his four-velocity V, =+ 
U,  (uuu, = +1)  is proportional to the current j ,  (= m u , ) .  For this choice, the 
dipole densities have been found to be proportional to the polarization vectors, (ups, = 
0) [IO1 

(3 .11~)  

(3.11b) 

Therefore, since the ordinary density p has been counted as a slow variable, the essential 
change of the magnetic dipole density (3.11b) arises for the first observer from the change 
of the polarization vector s,. However, this vector has been shown to undergo precession 
relative to the Fermi-Walker transported observer [lo] and the corresponding precession 
rate again contains the electric dipole density (el)M, (3 .11~) .  Thus, the result is that 
our first observer sees either both dipole densities as being rapid or neither, according 
to whether ‘e’’M, has to be counted as slow or rapid. However the electric dipole 
density (3 .11~)  is dependent on the pseudo-density ,& and a glance at the result (2 .27~)  
readily reveals the pseudo density .5 as a rapid variable (if it is non-zero). Thus, the 
conclusion is that the first observer will s& both dipole densities M, (3.11) as rapid and 
consequently he will expect the particle to be emitting dipole radiation of both the electric 
and magnetic kind. 
(ii) It may appear somewhat academic to resort to an observer who, concomitantly with 
the particle, is subject to the trembling motion. In view of this argument, it seems 
more reasonable to choose another observer whose four-velocity is just the average (b,) 
of the particle motion V,, + b,. For this choice, we deduce from the polarization 
tensor S,,, (2.274 the following expressions for the dipole densities 

(3.12~) 

(3.126) 



Kinematics of Dirac’s spinorfield 3025 

In contrast to the preceeding result (3.11), the magnetic  dipole^ density (3.126) is now 
an unambiguously slow object, because it is .completely free of the rapid phase ,y. 
However. the elechic density (3.12~) appears rapidly oscillating for our second observer and 
consequently he will predict purely electric dipole radiation, which will be Doppler-shifted 
for a laboratory observer according to the average motion of the radiating panicle. Observe 
also, that the electric dipole density (3.120) is closely related to the intrinsic velocity K 

and therefore le’]b4, vanishes when this internal degree of freedom is not excited (K -+ 0); 
however the mabetic part (3.126) is still present in this limit! This is the reason why 
the magnetic dipole properties of a Dirac particle are more relevant thm. their electric 
counterparts. 

3.4. Exclusion of a closed universe 

Up to now, we have delt with a fixed geometric background, either flat or curved. Now we 
include the geometry into the dynamics by applying Einstein’s field equations 

(3.13) 

where Lp is Planck’s length and the energy-momentum density Tu, is assumed to be 
exclusively due to Dirac’s wave field $. Here we want to restrict ourselves to a Friedman- 
Robertson-Walker (mw) universe which is usually considered to be a good model for the 
very early universe whose energy-momentum content was dominated by some quantum field, 
rather than by ordinary matter [ 111. That quantum field is usually taken as some scalar~field 
whose negative pressure in the ‘false’ vacuum drives the primeval idation of the universe 
and thus offers a possible explanation for the observed flatness of the universe (U ‘parness 
problem‘ in cosmology). However, there is also some doubt [12,13] whether such a scalar 
field really provides a serious foundation for the exclusion of closed and open universes in 
favour of the flat case. In this ambiguous situation, we want to point out here that the use 
of a spinorfield in place of a scalarfield clarifies the question to a certain extent, because 
the coupled DiraoEinstein equations do forbid a closed universe! The reason is that for an 
isotropic homogeneous universe the Einstein equations (3.13) enforce an energy-momentum 
density T,!, of the following kind 

T,, = ~ M  hub, - PB,, (Bpv := G ,  - b,b,) (3.14) 

where the mass-energy density M and the pressure P are homogeneous: and it is just such a 
density T,, which cannot be constructed with the Dirac spinor field q in a closed universe! 

For a proof of this assertion, we have to explicitly compute the (symmetrized) energy- 
momentum density ls’Ttuv,[@l due to the spinor field q: the result is [14] 

(3.15) 
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Here, the scalar fields lr)N, '"fi, '"W, "'W, and IC'!? are some parameters of the cosmological 
form of the Hamiltonian 'H, and need not be specified further in the present context; the 
important point is that we can substitute the present new result (2.27) for the densities j,, j ,  
and S,, into (3.15); and this yields the presence of such anisotropic terms as &bU + &b,, 
f,bu + fub ,  or f,b, + rub, in the energy-momentum density. However, the isotropy 
requirement (3.14) demands the vanishing of these terms and this demand implies the 
following three conditions 

sinhZK['"N .cos(): + 5 )  + 2"'W. sin()( f c)] = z((')fi .  c o s h k  - Z"!?) (3.16) 

sinhZK[lr)N ~ s i n ( x + ~ ) - ~ ( C ' ~ . c o s ( x + ~ ) ]  = O  (3.17) 

'''fi-2'C)W.cosh2K =o .  (3.18) 

M Mattes and M Sorg 

- 

However, there are further restrictions upon the complex scalar fields fi = ("fi - i(r)fi and 
@ = lc'P + iIr'i?, which are necessary in order to satisfy the original (covariant) D i m  
equation (1.8). Among these restrictions 121, we only need the following one here 

f i . W = O  (3.19) 

which says that either fi or $' (or both) must be zero. Combining this with the isotropy 
requirement (3.18) readily yields 

l ~ ' f i = l ~ l ~ = o ,  (3.20) 

But with the vanishing of both ('Ifi and (c)i? the equations (3.16) and (3.17) admit nothing 
else than the trivial solution 

")N = ( C w  E 0 (3.21) 

provided the intrinsic velocity K is different from zero (for K E 0, see below). Thus, the 
energy-momentum density (3.15) is cut down to the desired cosmological shape (WT,. 

( f i ~ ) - '  'w'T~pu) = $ m  p CPU + (("W . p - @)(4b,b, - G,") 

= 3[p('"W + 'm) 12 -~;. "'L?]b,bV - [p('"W - $m) - @~.  "$']B,, (3.22) 

from which the energy density M and the pressure P may be read off as (cf (3.14)) 

( 3 . 2 3 ~ )  

(3.23b) 

Evidently, both scalars P and M are dependent on the density p and therefore they can be 
homogeneous only if p itself is a homogeneous scalar field, i.e. 

( 3 . W  

However, with the conditions (3.201, (3.21) the gradient field of the density p is found as [2] 

(3.25) 

I a,p b,(b"a,p). 

a,P = 3"'Npb, +4'"fibA*S 4 - 2("W(4b,b~ - G,*)P 
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and consequently the homogenity requirement (3.24) demands 
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cnp = w* = 0 (3.26) 

This result cuts the energy-momentum density down to its final form for a FRw-universe 

(hc)-l~’T(p”l = 34yw + +n)b,b“ - p p w  - ” 4 1 B (3.27) 

which has already been used in some previous papers [2, 10,141. 
After the homogenity and isotropy requirements have left only two non-vanishing scalar 

fields (”A’ and “’W, one can easily complete the desired proof by applying the constraint 121 

(3.28) 

which evidently excludes the closed universe (U = -I)! 
As mentioned above, this exclusion is essentially based upon the assumption of a non- 

vanishing intrinsic velocity K. However, it has already been shown [14] that for vanishing K ,  

when the trembling motion is absent, the open universe (u = +1) must also be excluded 
and one is left with the somewhat trivial situation cif a flat universe (U = 0). Therefore it 
seems physically reasonable to admit the trembling motion and we will then encounter a 
much more interesting universe [15]. 
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